If it's not what You are looking for type in the equation solver your own equation and let us solve it.
388=1/2b*4b
We move all terms to the left:
388-(1/2b*4b)=0
Domain of the equation: 2b*4b)!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
-(+1/2b*4b)+388=0
We get rid of parentheses
-1/2b*4b+388=0
We multiply all the terms by the denominator
388*2b*4b-1=0
Wy multiply elements
3104b^2*4-1=0
Wy multiply elements
12416b^2-1=0
a = 12416; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·12416·(-1)
Δ = 49664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49664}=\sqrt{256*194}=\sqrt{256}*\sqrt{194}=16\sqrt{194}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{194}}{2*12416}=\frac{0-16\sqrt{194}}{24832} =-\frac{16\sqrt{194}}{24832} =-\frac{\sqrt{194}}{1552} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{194}}{2*12416}=\frac{0+16\sqrt{194}}{24832} =\frac{16\sqrt{194}}{24832} =\frac{\sqrt{194}}{1552} $
| r/21=18 | | 7x+5+9x+5=90 | | (2x+7)÷3=x | | 4u+22=-3u-6 | | 7a-3+3+6a=0 | | 388=1/2b(4b) | | 1/2(-28x-12)=-8 | | 5x-15-2x=5x-11 | | -5(1+6p)=-125 | | x=(80-66)/2 | | 7d=203 | | X-12x+1=12 | | 4.5(x+4)+1.7+1.5(x-2)=21 | | 16x+3=6x24 | | 4/5/m=1 | | 17x-5x-4x=8 | | 16(p-2)=7p | | a/9=17 | | 15x=12x+10 | | -8-x+x-4x=0 | | 25=12x+8-3x+1 | | -2x-3+4x=12 | | 8+14-6x=12 | | 132=22g | | 5x–4=35 | | 11h-7h-h=18 | | 11x-2=-1x-4 | | 3x/8-2=16 | | 6(x-3)-2x+1=17 | | 20+48.45x=50.95x | | 13x+60=125 | | 5,280/6=d |