380160=t2

Simple and best practice solution for 380160=t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 380160=t2 equation:



380160=t2
We move all terms to the left:
380160-(t2)=0
We add all the numbers together, and all the variables
-1t^2+380160=0
a = -1; b = 0; c = +380160;
Δ = b2-4ac
Δ = 02-4·(-1)·380160
Δ = 1520640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1520640}=\sqrt{9216*165}=\sqrt{9216}*\sqrt{165}=96\sqrt{165}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{165}}{2*-1}=\frac{0-96\sqrt{165}}{-2} =-\frac{96\sqrt{165}}{-2} =-\frac{48\sqrt{165}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{165}}{2*-1}=\frac{0+96\sqrt{165}}{-2} =\frac{96\sqrt{165}}{-2} =\frac{48\sqrt{165}}{-1} $

See similar equations:

| x+75=-75 | | 5x+3=-9+3x | | (5x-32)+(3x-4)=180 | | x/6=0.9/5.4 | | 12​=8n​ | | d/9=1/3 | | 3e+4=5e+16 | | 6x-45=3×+81 | | t=380160 | | 0.4h=48 | | 0.4h=49 | | 4x=10x–48 | | 5x+16=6x+7=180 | | 16x+4x=32 | | 5x+16+6x+7=180 | | 12(5-×)=7-(1+3x) | | 10x-5x=20x | | 8^-x=4^2x+3 | | 0=99-x | | 6x-2=6+4x-10 | | 14x-141=199+x | | –2x+6=–9x−8 | | 15x+4.5Y=18 | | |2x-4|=|3x+9| | | 2x-4|=|3x+9| | | f(×)=ײ-2×-10 | | 19+x=2000 | | 5x^2+x=1.25 | | 3x(x+12)=3x | | 8-3(5y+4)=-15y+9 | | 500(x)=10000000 | | 2(5−3x)=x−4(3−x) |

Equations solver categories