3780-(90-2x)(42-2x)=720

Simple and best practice solution for 3780-(90-2x)(42-2x)=720 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3780-(90-2x)(42-2x)=720 equation:



3780-(90-2x)(42-2x)=720
We move all terms to the left:
3780-(90-2x)(42-2x)-(720)=0
We add all the numbers together, and all the variables
-(-2x+90)(-2x+42)+3780-720=0
We add all the numbers together, and all the variables
-(-2x+90)(-2x+42)+3060=0
We multiply parentheses ..
-(+4x^2-84x-180x+3780)+3060=0
We get rid of parentheses
-4x^2+84x+180x-3780+3060=0
We add all the numbers together, and all the variables
-4x^2+264x-720=0
a = -4; b = 264; c = -720;
Δ = b2-4ac
Δ = 2642-4·(-4)·(-720)
Δ = 58176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{58176}=\sqrt{576*101}=\sqrt{576}*\sqrt{101}=24\sqrt{101}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(264)-24\sqrt{101}}{2*-4}=\frac{-264-24\sqrt{101}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(264)+24\sqrt{101}}{2*-4}=\frac{-264+24\sqrt{101}}{-8} $

See similar equations:

| b^2=7b-6 | | 3+6x=17-x | | 10(m-4)=-5(m-4) | | (x-5)-x=1* | | 18d+13=6d−13 | | 3x-4x+2+5x=6x+1+10 | | 7=x/4-11 | | (5+2y)+5y=40 | | 7n+8=71* | | k/7-10=-8 | | r²+18r+56=0 | | -10x+x/1.5=-5 | | -5=3m+-14 | | 10+2/3(3x-12)=20 | | 4s^2-16s+16=0 | | y-12y+18y=0 | | 3(2b-5)=10-3 | | s-72/8=3 | | 64+2w=−2w−10 | | 6x-8-1/2(4x+12)=20 | | 3x-4x+2+5x=6{x+1}+10 | | 9x+1–28·3x+3=0 | | 15=u/5+21 | | 3x-6+2x+26=180 | | 1/2m-3=5 | | | | 49=d/9+46 | | | | -2k+6=8k+4(2k-3) | | 75+x+37+70=180 | | 10r-8r-10=40-32 | | a+6a−9=30 |

Equations solver categories