If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-60x+16=0
a = 36; b = -60; c = +16;
Δ = b2-4ac
Δ = -602-4·36·16
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-36}{2*36}=\frac{24}{72} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+36}{2*36}=\frac{96}{72} =1+1/3 $
| 0.1x-0.05x=1.1 | | -2(3x+6)-(4x-3)=21 | | 52.50+2x=3.75x | | 2x+8=6x+5 | | 3(2x+4)=12x | | x3=-1331 | | 44+x=44 | | 2x÷4=5x+8÷2 | | 7-6u=5u=29 | | 8x-6=80=3x+1 | | 10x+6=x+33 | | 3n-n=-14 | | 36x^-60x+16=0 | | -13+2k=-3(k-1)-1 | | t/3+14=-8 | | 47=33-2(x-4) | | -106-x=-9x+174 | | 3x-16x=35 | | 180=x+32 | | 0.50+37.96=c | | 5^4+11t^2-12=0 | | 11x+15=11x+5 | | 2x−7/x−5=3 | | 4(x)^(1/2)=4x/3 | | 8x–6=80 | | 1÷3x+6=12 | | 180=8+3x | | 9p=162 | | 6+4x=x+4 | | 1/5(3X+1)=2x-3/5 | | 6(c+1)+3=2c+17 | | 11c+3=10c+5 |