If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36n^2=1
We move all terms to the left:
36n^2-(1)=0
a = 36; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·36·(-1)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*36}=\frac{-12}{72} =-1/6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*36}=\frac{12}{72} =1/6 $
| 19+13x=21 | | 49+n=90 | | 21-13m-7m=9 | | 2/3(x-30)=26 | | 9x+12-x=-52 | | 2x^2+25=-x^2+10x | | 8x+1x2=81 | | -11=x/3-5 | | h^2+8h–24=0 | | k/7-2/3=10/21 | | 8x+1/2=81 | | 4x+6=5x−9 | | 7x^-44x-22=0 | | 4.8=3/y | | 8x+1x/2=81 | | -3x-6-5x=18 | | 2x(-5-7x)=35 | | x2/5=30 | | 1m+2(6+6=5 | | 10=3x=2=x | | -(-x+2)-2x=6 | | x/5−18=−11 | | -18=4+2u | | 22-2u=18 | | 3x+(x+4)+70=180 | | 2x+4(x-3)=-24 | | 8x-2=81 | | x5−18=−11 | | q2-12q+18=0 | | 15x-1/3=9 | | 9x-8=4x+3x | | 2(x+1)-5x=23 |