If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36n^2+28n-4000=0
a = 36; b = 28; c = -4000;
Δ = b2-4ac
Δ = 282-4·36·(-4000)
Δ = 576784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{576784}=\sqrt{16*36049}=\sqrt{16}*\sqrt{36049}=4\sqrt{36049}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{36049}}{2*36}=\frac{-28-4\sqrt{36049}}{72} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{36049}}{2*36}=\frac{-28+4\sqrt{36049}}{72} $
| 10w-4w=12 | | (3x+10)=6x-20) | | -8x^2+40x+15=0 | | 4x=0.4738 | | 3-5(x+2)=3(5x-3)+5 | | 10x+3=7x-2 | | 7v-3v=16 | | 6w-2w=20w | | 4y+2y=12y | | 6(x)=5^2 | | 14x-6x=64 | | 3/4+2(x-3/6)=3x-4/10 | | -6x+3=2x-5 | | x-4=4x+14÷6 | | 7xx3x= | | 2x+-4=-8 | | 48+(2x+18)=180 | | 4/7d-45=d-9 | | 5x=66666655555 | | ((A-250)x5)=1355 | | -x+10=x-6 | | 7(2x+5)=4x-9-x= | | (A-700)x7-1057=0 | | x+x-x/2=6 | | 2x+2x+x=15 | | 3x^+4=52 | | x+x-1/2x=15 | | x+x-1/2x=6 | | 3/5x+1/2x-3=5/4x+3 | | X-2+2(2x+1)=-5(x+1) | | -5x-10=-4x-6 | | 2(w-3)-6=-3(-8w+2)-7w |