If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36=k2
We move all terms to the left:
36-(k2)=0
We add all the numbers together, and all the variables
-1k^2+36=0
a = -1; b = 0; c = +36;
Δ = b2-4ac
Δ = 02-4·(-1)·36
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-1}=\frac{-12}{-2} =+6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-1}=\frac{12}{-2} =-6 $
| -5t+-7=11t-25 | | 9(13)-2+6y-1=180 | | 2x+5=2x+4x-5 | | 7.2/12=n/36 | | 0=50+10p | | 4x-4=+5 | | 5y+14-3y=10 | | -18-16n=-n-17n-10 | | 15-2x+20=4x+3 | | 10x+4+2x+-6=6x+28 | | -7=-5/6a | | 5(1.1x+9)=2(-6-0.2 | | 15+y+y+y+y=41 | | v/6=10 | | 9(13)-2=6y-1 | | 5x+2−2=8 | | (x+10)^2=11 | | 1x+5+2x=10 | | (2x)+40=80 | | x+5x+4=3(2x-1) | | 3/5=-4/5x | | 3/8m+6=3 | | 2(x+4)+3=8(x+7) | | -3(7x+4)=-21x-12 | | -6x+7(1-1x)=4(1x-4 | | 2(4x-3)+5=-25 | | 64=a2 | | 6+2x=-10x+12 | | 17+18j=19j | | 10x+4+2x-6=6x+2 | | y+y+y+y+15=41 | | 9x-2+4x+13=180 |