If it's not what You are looking for type in the equation solver your own equation and let us solve it.
361=q2
We move all terms to the left:
361-(q2)=0
We add all the numbers together, and all the variables
-1q^2+361=0
a = -1; b = 0; c = +361;
Δ = b2-4ac
Δ = 02-4·(-1)·361
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38}{2*-1}=\frac{-38}{-2} =+19 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38}{2*-1}=\frac{38}{-2} =-19 $
| (5x+17)=(x+9) | | g-740=-433 | | –9u+3u−–7u+u=–14 | | 69x=80-2x | | 3y–2=2y/2 | | f2=400 | | 21h=861 | | 176+2h=992 | | h/9=29 | | 9y-77+20=180 | | -30.5=7.5a-9.5a | | 2a-1=22 | | 12+19x=75 | | 20+9x=15x-4 | | r/22=12 | | 7w=24+5w | | 3d+3(d+3)=51 | | -4g-10=2 | | 2(a-1=22 | | 2+5h=3h-6 | | y/11=22 | | -6+20a=9 | | 2=-4w-34 | | 28=-7/9y | | 29.5-4n=7(5n-8.5) | | 8(-4+10)=-10n-8 | | 3+d=-6 | | 1=4m-7 | | -2f+7.5-2.5=-20.5 | | -2.8=1.4p | | -1.8=2z-185 | | G(x)=√x1 |