If it's not what You are looking for type in the equation solver your own equation and let us solve it.
360=1/2x+(x-46)+(x-35)x
We move all terms to the left:
360-(1/2x+(x-46)+(x-35)x)=0
Domain of the equation: 2x+(x-46)+(x-35)x)!=0We multiply all the terms by the denominator
x∈R
-(1+360*2x+(x-46)+(x-35)x)=0
We calculate terms in parentheses: -(1+360*2x+(x-46)+(x-35)x), so:We get rid of parentheses
1+360*2x+(x-46)+(x-35)x
determiningTheFunctionDomain 360*2x+(x-46)+(x-35)x+1
We multiply parentheses
x^2+360*2x+(x-46)-35x+1
Wy multiply elements
x^2+720x+(x-46)-35x+1
We get rid of parentheses
x^2+720x+x-35x-46+1
We add all the numbers together, and all the variables
x^2+686x-45
Back to the equation:
-(x^2+686x-45)
-x^2-686x+45=0
We add all the numbers together, and all the variables
-1x^2-686x+45=0
a = -1; b = -686; c = +45;
Δ = b2-4ac
Δ = -6862-4·(-1)·45
Δ = 470776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{470776}=\sqrt{4*117694}=\sqrt{4}*\sqrt{117694}=2\sqrt{117694}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-686)-2\sqrt{117694}}{2*-1}=\frac{686-2\sqrt{117694}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-686)+2\sqrt{117694}}{2*-1}=\frac{686+2\sqrt{117694}}{-2} $
| 3x-6=4x+7-x | | 5/6=1/6=d | | 180=(10x+20) | | −2+2w=6+5w= | | 8=-18+3(2-5n) | | 1,700-2.4g=1,350-1.6g | | 3m−6=4m+7−m | | d+4=-14-8d | | 100=-4(-7+3r) | | 1+5x^2=-10x | | 2(x−6)−8=29−5x | | 7x-4x-8=5x | | (9-x)^2=2 | | -8x+12=3-8x+9 | | 10+y/2=20 | | 5x–120=3x+180 | | 3x(-4)=-7 | | -4x+3(5x+10=-36 | | x-7=14-8(x+6) | | –8(d–1)=16 | | -0.5+x=-5 | | 2s+9=9 | | I0y-2y=64 | | 2x-5(x-4)=-5+2x-5 | | 6.4q+7.86=-6.7q | | 5x–120=3x+180. | | 9q=7q-14 | | 40+2x=3x-10 | | r=(4)/(3r)-5 | | x−7=14−8(x+6) | | 3/4(x+2)=6-1/8x+3x= | | -19b-13=-17b+7 |