360=(20+2x)(16+2x)

Simple and best practice solution for 360=(20+2x)(16+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 360=(20+2x)(16+2x) equation:



360=(20+2x)(16+2x)
We move all terms to the left:
360-((20+2x)(16+2x))=0
We add all the numbers together, and all the variables
-((2x+20)(2x+16))+360=0
We multiply parentheses ..
-((+4x^2+32x+40x+320))+360=0
We calculate terms in parentheses: -((+4x^2+32x+40x+320)), so:
(+4x^2+32x+40x+320)
We get rid of parentheses
4x^2+32x+40x+320
We add all the numbers together, and all the variables
4x^2+72x+320
Back to the equation:
-(4x^2+72x+320)
We get rid of parentheses
-4x^2-72x-320+360=0
We add all the numbers together, and all the variables
-4x^2-72x+40=0
a = -4; b = -72; c = +40;
Δ = b2-4ac
Δ = -722-4·(-4)·40
Δ = 5824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5824}=\sqrt{64*91}=\sqrt{64}*\sqrt{91}=8\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{91}}{2*-4}=\frac{72-8\sqrt{91}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{91}}{2*-4}=\frac{72+8\sqrt{91}}{-8} $

See similar equations:

| 5(x-6)=160 | | =−4+y1−2−12y6 | | 8x+2(2x-1=2 | | 7x-8-3x=4 | | 2x-5=160 | | 1/2n+6=24 | | 2a^2+6a-36=2()() | | 4×x-(2-6×x)=3 | | x^2+7+16=0 | | 7/12x=2 | | 2f+8=18 | | 8w+31=-7(w-2) | | x²+9x-83=4x+1 | | -9p=5-8p | | 8w+31=-7(w-2 | | 8w31=-7(w-2) | | x/10=3=10 | | .75x+8.75=9 | | q/2+5=3 | | -5u+3(u-5)=-27 | | (3x)3-(x)2-10x3x=0 | | -3u-6=-u | | -8x+3=2x-27 | | 3/4x+83/4=9 | | -4(u-5)=-6u-18 | | (x+5)^2=289 | | 3x+7+7x+6=180 | | 2b+-1=7 | | 10x+7=16x-5 | | -v+7=-6 | | 28+25m=35+18m | | 19=5(u-5)-7u |

Equations solver categories