If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36(20)=(2x-6)(x+6)
We move all terms to the left:
36(20)-((2x-6)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-6x-36))+3620=0
We calculate terms in parentheses: -((+2x^2+12x-6x-36)), so:We get rid of parentheses
(+2x^2+12x-6x-36)
We get rid of parentheses
2x^2+12x-6x-36
We add all the numbers together, and all the variables
2x^2+6x-36
Back to the equation:
-(2x^2+6x-36)
-2x^2-6x+36+3620=0
We add all the numbers together, and all the variables
-2x^2-6x+3656=0
a = -2; b = -6; c = +3656;
Δ = b2-4ac
Δ = -62-4·(-2)·3656
Δ = 29284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29284}=\sqrt{4*7321}=\sqrt{4}*\sqrt{7321}=2\sqrt{7321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{7321}}{2*-2}=\frac{6-2\sqrt{7321}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{7321}}{2*-2}=\frac{6+2\sqrt{7321}}{-4} $
| -(x^2/6)+12=0 | | 2x2-x-2=0 | | 4(4x-8)=12(2x-4) | | -24=-9d-8d | | 34=13/n | | 2x^2+18=6x | | 3(x+2)=-5-2(×-3) | | 2m+5/2=37/2 | | F(x)=-4x+12/x-3 | | X2-12x-1728=0 | | 19m=20m+13 | | 12+3.5+x=90 | | 2=10c−4(2c−9)c= | | −52x−75=6x−52 | | y-1=11.9 | | x+2=7.5 | | (X^2+2x-5)-(3x+2)=x^2+1 | | v-15=-27- | | (6x+2)(4x+3)=0 | | 7(x-1)+3=2x+9 | | 1/2n-15=-1 | | (5y-8)=7 | | 6x+3=1/2 | | 63-4w=3w | | -2m/9+12=-8 | | 6.75x+7.5-2.5x=3.75x-8.75 | | 8x+4+5x-5=180 | | 2/3e+7=17 | | 8+4u=6u | | 7/5x+1=-3 | | 7x-4+12x+13=180 | | x+4=- |