35x+910=-1/5x-2310

Simple and best practice solution for 35x+910=-1/5x-2310 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35x+910=-1/5x-2310 equation:



35x+910=-1/5x-2310
We move all terms to the left:
35x+910-(-1/5x-2310)=0
Domain of the equation: 5x-2310)!=0
x∈R
We get rid of parentheses
35x+1/5x+2310+910=0
We multiply all the terms by the denominator
35x*5x+2310*5x+910*5x+1=0
Wy multiply elements
175x^2+11550x+4550x+1=0
We add all the numbers together, and all the variables
175x^2+16100x+1=0
a = 175; b = 16100; c = +1;
Δ = b2-4ac
Δ = 161002-4·175·1
Δ = 259209300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{259209300}=\sqrt{100*2592093}=\sqrt{100}*\sqrt{2592093}=10\sqrt{2592093}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16100)-10\sqrt{2592093}}{2*175}=\frac{-16100-10\sqrt{2592093}}{350} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16100)+10\sqrt{2592093}}{2*175}=\frac{-16100+10\sqrt{2592093}}{350} $

See similar equations:

| 3(a-6)+4(-a-1)=-14 | | h/6+h/8=(1+1/6) | | -5+2v=v | | h/6+h/8=1+1/6 | | -3(b-9)=0 | | 28=-(6x-1)-7(4+7x) | | 3(-7+3n)=7n-31 | | 8a+22=10+14a | | 7(n+6=91) | | 7x+9+6x+14=180 | | 5x-6-2x=-12 | | 6-3q=-6q | | 3÷(x+2)=6 | | -68=-6(-5+8m)-5(7m+3) | | 6=2(v-6)—2 | | (3x+8)=(6x+2) | | 144=-3(7x-6) | | 2(x+5/2)=7 | | 3m+8m=120 | | -2(7n-6)=7n+12 | | 2/5=3a-1/5 | | 3(x-1)-(2x-4=1 | | (17x+5)+(13x-19)=180 | | 122=7+5(-4x-1) | | 5×n-6=29 | | 11.4+2x=38 | | -2(7n-6)=7+12 | | 5x-27+9x-8=7x-32 | | 2(g+2)=16 | | 4x+6=6x-15 | | 3(n-50=-2n | | 45x=51 |

Equations solver categories