If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35v^2-21v-28=8v
We move all terms to the left:
35v^2-21v-28-(8v)=0
We add all the numbers together, and all the variables
35v^2-29v-28=0
a = 35; b = -29; c = -28;
Δ = b2-4ac
Δ = -292-4·35·(-28)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-69}{2*35}=\frac{-40}{70} =-4/7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+69}{2*35}=\frac{98}{70} =1+2/5 $
| 3.475+2t=4.125 | | (t)=6t^2−4t+7 | | M²+3m=40 | | 0.5r+-0.25=0.5+-0.25r | | 8x+33=30+7x | | 5(u-2)-8=-3(-9u+8)-6u | | 5x+2=-(x+4) | | |5x|=5 | | 1.2+b=2.3 | | −5(−3x+2)−4x−5=−48 | | x+0.4=1.3 | | 18=-2f | | .5+z=1.8 | | 6a-7=-55 | | 6y-30=-26 | | x+159=180 | | 10x-2=8x+22 | | 05+z=1.8 | | 175n2-536n+336=7n2 | | 6(u+5)=8u+20 | | X-0.15x=250.75 | | 10p-37=-32 | | X2-11+3x+4=180 | | 8x11=(8x10)+(1x10) | | x+.7=2.1 | | 8x+10+6x-2=180 | | -6w+4(w+8)=34 | | 9b-(-22)=40 | | r+1.5=2.9 | | x-83.14159=3.14159 | | (x+14)°=(9x-4)° | | t+1.1=1.8 |