If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35n^2=22n=3=0
We move all terms to the left:
35n^2-(22n)=0
a = 35; b = -22; c = 0;
Δ = b2-4ac
Δ = -222-4·35·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-22}{2*35}=\frac{0}{70} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+22}{2*35}=\frac{44}{70} =22/35 $
| (x-5)^2=x^2 | | 11w=6 | | 7/8=y/13 | | 33=3v-9 | | X^4-4x^2-4x^2=0 | | 3^4/5•3^3/x= | | |2x+3|=|x+3| | | 16x-12=50 | | 92-2x=-39-9x | | 6x+41=2x+9 | | 41=-4p=5 | | (2(x+5))÷3=8 | | 6+8x=+3x | | (x/5)-1=(x/3)+(1/3) | | y=-2(-1/2+5/2) | | 8a^2+4=0 | | 4(3p2+2p)-12p2=2(8p+6) | | 2(3x+1)-3(x+3)=2 | | x+2(3x-8)=5 | | H(1/2)=-16t^2+16t+32 | | 5/6=x/180 | | 3x10=2x11 | | 5y+0.33=1.17 | | 5/6=x/150 | | 10t-7=6 | | 8(f-2)=4 | | 10+20x8=180 | | 6=10x-7 | | 25x+-5=10 | | 5(2x+4)+2(5x+1)=37 | | 5(2x+4)+2(5+1)=37 | | 5^3r-3=5^r+2 |