If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35n^2+32n+3=0
a = 35; b = 32; c = +3;
Δ = b2-4ac
Δ = 322-4·35·3
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{151}}{2*35}=\frac{-32-2\sqrt{151}}{70} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{151}}{2*35}=\frac{-32+2\sqrt{151}}{70} $
| –3b+2=14 | | x^2+20x+101=0x2+20x+101=0 | | 6+5(m+11=26 | | |4y+5|=15 | | r-20=-5 | | 7(x+7)+2=9(x+1) | | r+-13=-6 | | -1.4=(x-69)/2.8 | | 2.4x+7.12x=-14.16 | | 13=-23+2y | | x-6.5=5.47 | | -3.036=0.35x+x | | –3(s+8)=–18 | | 3.4b-1.9=8.89 | | 37÷5x=2 | | -8x+15x= | | v+5.21=9.37 | | 10x-3x+10=2x-20 | | -10y+3X=30 | | 2(x-4)=4x-5(x-1) | | (6x+41)+(-10x+58)=111 | | F(-5)=2x+2 | | 43−3b=59 | | 2.75x+13=7x-55 | | x/11=8/22 | | 3x+1÷5=13 | | 6x−14=9x−56x-14=9x-5 | | 2x+1÷3=5 | | 64=-16x | | 4(x-50)=3x95 | | 9z+-34=-7 | | 3x+5)=(7x-15) |