If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35X^2+7X=0
a = 35; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·35·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*35}=\frac{-14}{70} =-1/5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*35}=\frac{0}{70} =0 $
| 95=9/b | | 8^-x=16 | | 6-m÷6-8=0 | | -1+5+2(i+6)=22 | | 95=9-b | | 81÷x(10-1)=1 | | 2/9^2x+3=4,5^x-2 | | 4(4x+6x)=4x+30+50 | | 60=38*0.7880756708(x/52) | | 2(x-3)/3-(x-2)/4=1 | | 4(5y-2=52 | | 2x-3+4-x=4-2x | | -9v+6=-5(v-6) | | 27-18x=20-8x | | 5*(x+2)+1=26 | | 5p-14=8p+4= | | x^2-25.51x+10.204=0 | | 27x^2-18x+2=0 | | 2x+x=158 | | -2x+6x-13=4(x-2)-20 | | 3x²+2x-1=0 | | v/8-1=-7 | | 0.4(2x+1/2)=3(.2x+(-2))-4 | | 6x+2=2x−1 | | X^3+12x^2-20x=0 | | (2x+1)/(3x-2)=0.2 | | 10x-3=-4x+2(3) | | X^2-x+18/12=0 | | 6x+9/4=4 | | 32=u/3+11 | | (2x+1)/(3x-2)=-1 | | 2p×1=13 |