354x2=879(24)

Simple and best practice solution for 354x2=879(24) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 354x2=879(24) equation:



354x^2=879(24)
We move all terms to the left:
354x^2-(879(24))=0
determiningTheFunctionDomain 354x^2-87924=0
a = 354; b = 0; c = -87924;
Δ = b2-4ac
Δ = 02-4·354·(-87924)
Δ = 124500384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124500384}=\sqrt{144*864586}=\sqrt{144}*\sqrt{864586}=12\sqrt{864586}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{864586}}{2*354}=\frac{0-12\sqrt{864586}}{708} =-\frac{12\sqrt{864586}}{708} =-\frac{\sqrt{864586}}{59} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{864586}}{2*354}=\frac{0+12\sqrt{864586}}{708} =\frac{12\sqrt{864586}}{708} =\frac{\sqrt{864586}}{59} $

See similar equations:

| 16+2n=-8+4(n-3) | | 240+95x=240+125x | | 3x−16+4x-8=60 | | 5(x+2)-3x+2x=10 | | (9y-8)=62 | | x+8(x-4)=95 | | -(x+1-2)-5/2=-18 | | 5x-20=3x+17 | | 2/9q=20 | | 2x-(8x-3)=0 | | 1/3a-1/3=a | | 1.2x+2(x+6)=5x-9.8-4x | | 5x-1=6x+46 | | p=13+6(355)/13 | | x6−26x3−27=0 | | 0,4(3x+18)=1.2(x+6) | | 9x-7=9(x-8) | | q^2-8q-4=5 | | -x+2=-2/3x | | (-4x)+3=-15 | | 0.04(y-6)+0.08y=0.10y-0.01 | | q^2-8q-4=0 | | x+1/2=4x+3 | | 2(4w-5)=2(6w+6) | | z-8π=π | | 13+18v=-v-2+20v | | .20+13+x=-1/10(x+40)+4 | | 32=-8(x-2)+8x | | 4x-8=10+3x | | 12x+17=-79 | | -17+b/3=13 | | -3=2x+4/2=3 |

Equations solver categories