If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35(5+10n)=5(n+2)n=
We move all terms to the left:
35(5+10n)-(5(n+2)n)=0
We add all the numbers together, and all the variables
35(10n+5)-(5(n+2)n)=0
We multiply parentheses
350n-(5(n+2)n)+175=0
We calculate terms in parentheses: -(5(n+2)n), so:We get rid of parentheses
5(n+2)n
We multiply parentheses
5n^2+10n
Back to the equation:
-(5n^2+10n)
-5n^2+350n-10n+175=0
We add all the numbers together, and all the variables
-5n^2+340n+175=0
a = -5; b = 340; c = +175;
Δ = b2-4ac
Δ = 3402-4·(-5)·175
Δ = 119100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{119100}=\sqrt{100*1191}=\sqrt{100}*\sqrt{1191}=10\sqrt{1191}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(340)-10\sqrt{1191}}{2*-5}=\frac{-340-10\sqrt{1191}}{-10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(340)+10\sqrt{1191}}{2*-5}=\frac{-340+10\sqrt{1191}}{-10} $
| 5. 5–2x=5 | | 2x;(3x+5)=180 | | 12h-4h=16 | | 3x-12=2x-13 | | 3x+5+x=15=180 | | 2w=–10 | | f(2)=120-25(2) | | -5(3n=5)=20 | | 6x-5=2x+11 | | x2-5x=5 | | 3f+3=-9 | | -20-4x=-6(x+6) | | 11/3(x-9)-2=-2/3(2x+3)-9 | | 3(2y+4)14(3y=2 | | 9×9+2+7b=90 | | 5x+5x+27=90 | | 4x=9-1 | | 9v-2=61 | | 262=-2-6(7x+5) | | 5x^2-31=1= | | 6x+5=5x+8+2x= | | -11x+4=9x-20x-44 | | 3x−2= 8x+88x+8 | | 3/9=2/k-5 | | -4-x=-2(2-7x) | | 9n-2=-20 | | (7x-2)+(6x+4)=10 | | 8=18(16-40n) | | (7x-2+)(6x+4)=10 | | -6(5x–1)=96 | | 10+6c=-5+9c | | X+3/5=1/4x+2/10 |