34x+95=3(14x+9)34x+95=3(14x+9)

Simple and best practice solution for 34x+95=3(14x+9)34x+95=3(14x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34x+95=3(14x+9)34x+95=3(14x+9) equation:



34x+95=3(14x+9)34x+95=3(14x+9)
We move all terms to the left:
34x+95-(3(14x+9)34x+95)=0
We calculate terms in parentheses: -(3(14x+9)34x+95), so:
3(14x+9)34x+95
We multiply parentheses
1428x^2+918x+95
Back to the equation:
-(1428x^2+918x+95)
We get rid of parentheses
-1428x^2+34x-918x-95+95=0
We add all the numbers together, and all the variables
-1428x^2-884x=0
a = -1428; b = -884; c = 0;
Δ = b2-4ac
Δ = -8842-4·(-1428)·0
Δ = 781456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{781456}=884$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-884)-884}{2*-1428}=\frac{0}{-2856} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-884)+884}{2*-1428}=\frac{1768}{-2856} =-13/21 $

See similar equations:

| 10h+8h+4h-3h=18 | | 4=-28(x) | | (T+20)=(t+10)t | | 3x=1770-20 | | 10p+5=25 | | 1=2^-2x | | 2x+3=9x+17;x= | | 47+10=-10x+7 | | 4x-3=3x+2;x= | | 1/9–2/3x=1/18 | | -24+6i=-6 | | 3n−6=−8(6+5n) | | x=12+-5 | | 3=p+12 | | 90+7x+25+8x-10=180 | | 10(7-2f)=70 | | 72=O.6r | | x/4=16=23 | | 308=-16t^2+80t+224 | | 8-4/9y=-3 | | 16.75x+20.00=177.50 | | (X-8)-(-2x+2)=8 | | (2x-38)=32 | | 7=20−r | | 8x-5=(x-4) | | 2w+1+1+1=-1 | | 6x+30=4x-60 | | -147=53+10x | | 2x^2-94=130 | | 2.5(2x-4)=90 | | 4=m-77/3 | | 5+4k=-7 |

Equations solver categories