If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34=y2
We move all terms to the left:
34-(y2)=0
We add all the numbers together, and all the variables
-1y^2+34=0
a = -1; b = 0; c = +34;
Δ = b2-4ac
Δ = 02-4·(-1)·34
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{34}}{2*-1}=\frac{0-2\sqrt{34}}{-2} =-\frac{2\sqrt{34}}{-2} =-\frac{\sqrt{34}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{34}}{2*-1}=\frac{0+2\sqrt{34}}{-2} =\frac{2\sqrt{34}}{-2} =\frac{\sqrt{34}}{-1} $
| 3(x-5)+7=-8 | | 2t+6=2.5t | | -3/4m=5/6 | | 4x+2x+x=2x+4x | | 9*k=108 | | 11s+(-4s)-(-11)=-10 | | 5(3x=10)=110 | | 2a=6-3.4 | | 225x+500=1350x+14 | | 1/4x+35=3/4+5 | | 26=7(g-9)+21 | | 225x+500=1350x | | 5(2x-50)=110 | | x+2/3=5/6x+3 | | s-2;s=0 | | 10=j/15 | | 16)16=p/6 | | 4/15=-2/5z | | 8(x+6)+1=-3(-x-33) | | 7d+10=-3d+50 | | -3.4k=59.5 | | 312-(560/y+43)=199 | | 2.6d=-10.4 | | 9x+3(4x-15)=-9x+65-20 | | -3/2*y=-27/4 | | 0=9(k-2.3)+33 | | 6d−211 =2d−213 | | -2(v+6)=6 | | 5(x-8)=255 | | (1/2x-3/4)=8 | | 5/7*z=-10/4 | | 6x-2=4x-(1+2x) |