If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34-4w(2w+1)=10w-4(10+w)
We move all terms to the left:
34-4w(2w+1)-(10w-4(10+w))=0
We add all the numbers together, and all the variables
-4w(2w+1)-(10w-4(w+10))+34=0
We multiply parentheses
-8w^2-4w-(10w-4(w+10))+34=0
We calculate terms in parentheses: -(10w-4(w+10)), so:We get rid of parentheses
10w-4(w+10)
We multiply parentheses
10w-4w-40
We add all the numbers together, and all the variables
6w-40
Back to the equation:
-(6w-40)
-8w^2-4w-6w+40+34=0
We add all the numbers together, and all the variables
-8w^2-10w+74=0
a = -8; b = -10; c = +74;
Δ = b2-4ac
Δ = -102-4·(-8)·74
Δ = 2468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2468}=\sqrt{4*617}=\sqrt{4}*\sqrt{617}=2\sqrt{617}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{617}}{2*-8}=\frac{10-2\sqrt{617}}{-16} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{617}}{2*-8}=\frac{10+2\sqrt{617}}{-16} $
| -2(4x-5)+2x+4=−2(4x-5)+2x+4=26 | | d+4=34-9d | | (k-3)1/4=-8 | | 3.4+.85x=5.27 | | x/3=1.5/7 | | -9=-7k | | 0.25x+0.1x=0.4x+5 | | x+34=22 | | -45-5/2a=3+1/2a | | a+26=-31 | | x+52=123 | | 12+2n=2n | | b/3-19=-15 | | x+79=256 | | -7+4x+1+6=3x+x | | 12-2u=+45 | | v-17=23 | | 3x+4x=42 | | 4x+x-3=11x | | 1/3x-8=4/3x | | (5+15x)+(10x)=180 | | 2000(x+1.25)=3.5 | | -4+4p=-24 | | 4(2x-4)-5x+4=4(2x-4)-5x+4=-30 | | 3=u-3/4 | | (6x-7)=(x+38) | | 6(3x+1)−30=3(2x−4) | | 4x-30=6x+2 | | 2(t−6)=2 | | 2x-½x=12 | | 9x+3=8x6 | | x+10+9x+30=180 |