34-4/7x=5/23x-15

Simple and best practice solution for 34-4/7x=5/23x-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34-4/7x=5/23x-15 equation:



34-4/7x=5/23x-15
We move all terms to the left:
34-4/7x-(5/23x-15)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 23x-15)!=0
x∈R
We get rid of parentheses
-4/7x-5/23x+15+34=0
We calculate fractions
(-92x)/161x^2+(-35x)/161x^2+15+34=0
We add all the numbers together, and all the variables
(-92x)/161x^2+(-35x)/161x^2+49=0
We multiply all the terms by the denominator
(-92x)+(-35x)+49*161x^2=0
Wy multiply elements
7889x^2+(-92x)+(-35x)=0
We get rid of parentheses
7889x^2-92x-35x=0
We add all the numbers together, and all the variables
7889x^2-127x=0
a = 7889; b = -127; c = 0;
Δ = b2-4ac
Δ = -1272-4·7889·0
Δ = 16129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16129}=127$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-127)-127}{2*7889}=\frac{0}{15778} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-127)+127}{2*7889}=\frac{254}{15778} =127/7889 $

See similar equations:

| 6c+3c+18=54 | | -7(x-13)=-126 | | 3x+x+8=10x-6x+8 | | 4m+7-2=-10+m | | 6x+29x-3=7(5x+1) | | -6=n/8=1 | | 61x+939x-79=20(50x+27) | | 5.7=1.9x+19 | | X+15=9x | | 3x+1×=20 | | 3x+×=20 | | 4(3x+2)=15x+7-3x+1 | | 6x+14-7=5(4x+5) | | 7/y=22 | | 6=1.5÷x | | y-1/2=21/2 | | Mx6=21 | | 6+10x=2x | | 8|5–m|=64 | | y-1/2=-21/2 | | 8a+-15=7 | | 40-2x=30-x | | -2(x-20)=6(2-0.5x) | | x÷4+11=-4 | | 3.29x+9.87=19.74 | | -5=4y+8 | | 36=2w+3 | | y=18/3^2 | | 5(y+2)=70 | | 36=3+2w | | 3(z-7)=8(z-8) | | 3k-+4=-2-6k |

Equations solver categories