34*34+54*54=c*c

Simple and best practice solution for 34*34+54*54=c*c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34*34+54*54=c*c equation:



34*34+54*54=c*c
We move all terms to the left:
34*34+54*54-(c*c)=0
We add all the numbers together, and all the variables
-(+c*c)+34*34+54*54=0
We add all the numbers together, and all the variables
-(+c*c)+4072=0
We get rid of parentheses
-c*c+4072=0
Wy multiply elements
-1c^2+4072=0
a = -1; b = 0; c = +4072;
Δ = b2-4ac
Δ = 02-4·(-1)·4072
Δ = 16288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16288}=\sqrt{16*1018}=\sqrt{16}*\sqrt{1018}=4\sqrt{1018}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1018}}{2*-1}=\frac{0-4\sqrt{1018}}{-2} =-\frac{4\sqrt{1018}}{-2} =-\frac{2\sqrt{1018}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1018}}{2*-1}=\frac{0+4\sqrt{1018}}{-2} =\frac{4\sqrt{1018}}{-2} =\frac{2\sqrt{1018}}{-1} $

See similar equations:

| 10x^2-8x+0.8=0 | | 5(2w+4)+2w=116 | | 8=4=2d | | 10p=10.000 | | 4(4x–5)=2(8x–10) | | 5b+15=5 | | -7x+4=74 | | 16=-4+w/4 | | 4g+32=60 | | 3.2x+4=100 | | 4(2t+3)=-2 | | 4((1/4)x-1)=1/4 | | 9x+36=3x-24 | | 6(w+3)=-3(3w-1)+3w | | 23x+6=24 | | -4x-28=-2(3x+6) | | 3t-11=5t+1 | | x+7/10=15 | | 6(21)-14+y+8=180 | | 11/x=3/13x= | | 9x+5=38+6x | | 8.32/2.6=x | | 2x+6x+5=-11 | | 6-6n=75+54n | | 4/3x-14=-58 | | 2y+33=5y | | 3(21)+5=y+8 | | 0,7x-2=3-x | | 4x+2=16x+2 | | x=180-21 | | 15-6x=10-x | | -4(x+6)=20 |

Equations solver categories