33x-4=1/432x+56.

Simple and best practice solution for 33x-4=1/432x+56. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 33x-4=1/432x+56. equation:



33x-4=1/432x+56.
We move all terms to the left:
33x-4-(1/432x+56.)=0
Domain of the equation: 432x+56.)!=0
x∈R
We add all the numbers together, and all the variables
33x-(1/432x+56)-4=0
We get rid of parentheses
33x-1/432x-56-4=0
We multiply all the terms by the denominator
33x*432x-56*432x-4*432x-1=0
Wy multiply elements
14256x^2-24192x-1728x-1=0
We add all the numbers together, and all the variables
14256x^2-25920x-1=0
a = 14256; b = -25920; c = -1;
Δ = b2-4ac
Δ = -259202-4·14256·(-1)
Δ = 671903424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{671903424}=\sqrt{5184*129611}=\sqrt{5184}*\sqrt{129611}=72\sqrt{129611}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25920)-72\sqrt{129611}}{2*14256}=\frac{25920-72\sqrt{129611}}{28512} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25920)+72\sqrt{129611}}{2*14256}=\frac{25920+72\sqrt{129611}}{28512} $

See similar equations:

| x/12=7/13 | | x+(.03x)=260000 | | -18x-13=3x | | x+(.03x)=260,000 | | 3y-29=-7(y+7) | | 8-19n=0 | | -15s-5=-11 | | 11x+6x24=79 | | 11x+6x4=79 | | 1.5x-2=5+.5x | | 12x+5=4-4x | | 11u+20u+-15u+-7u+19=-17 | | -4x+2=-2(x-3) | | -9x+11x+18=0 | | 19m+-10m+m+-4m-11m=-20 | | 16u-3u+3u-7u=18 | | y=2.3X-7.5 | | 100+50x=50+75x | | 12x-3x+24=x | | x/6+3x=4 | | 19*11+x-11=12x | | 12(x)=3(x+8) | | 266-12x=38 | | -12s+9s-5s+-13s-4s+-10=15 | | 14q-9q-4=6 | | -4c+12c-11c+10=13 | | -g+6g+7g+13g+-9=16 | | –g+6−–7g−–13g+–9=16 | | u+5u-1=5 | | 2k+k-3=9 | | 2m-2m+4m-4=8 | | 29x-23=13 |

Equations solver categories