If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-36x+9=0
a = 32; b = -36; c = +9;
Δ = b2-4ac
Δ = -362-4·32·9
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12}{2*32}=\frac{24}{64} =3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12}{2*32}=\frac{48}{64} =3/4 $
| 4x-18=180° | | 16a=208 | | 4/5x-2/x=2/10 | | 7d^2-5d-46=0 | | 180=115+2r-5 | | 22y=18(y-2 | | 578+x=989 | | x+43=98 | | 2x=1400 | | 9x-(6x+5)=3x+5 | | ⅘(10m+30)=-3(m+3) | | ⅘(10m+30)=-3(m+3 | | 4(3r-4)=(r+9)+2 | | 13-v+3=(v+10) | | 9x-(3x+5)=3x+5 | | (3x+30)°=180 | | 6.9x+1=82 | | 4u+7=10u+37 | | n+61/8=-4 | | c-83/6=2 | | -3w/7=-12 | | C(x)=5x-25 | | 17+8s=73 | | P(x)=-5x+20 | | x=-5x+20 | | 6z-25=23 | | v-81/7=2 | | (8x-5)(6x+8)=0 | | -(p-39)=-38 | | -4x+3=12x-9 | | 0.04(5-s)=0.05(6-s | | 8s-23=41 |