If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32n^2-162=0
a = 32; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·32·(-162)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*32}=\frac{-144}{64} =-2+1/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*32}=\frac{144}{64} =2+1/4 $
| (9^x-1)-2*3^x-27=0 | | |-2x-3|=3 | | |-8x-4/3|=2 | | 9x+5=6x | | 3(x+4)-x+10=38 | | 3x+30+2x+10=5x-20+2x+10 | | 78=h+14 | | 4g=68 | | 18x+36=12x+54 | | 5k2-15=-11 | | 2(x-5)-3=4x-7 | | 18x+54=12x+36 | | 180/a=3/100 | | 7+3r=1 | | v2-13v+50=8 | | 3c-5=22 | | 5-9r=1 | | 5q-8=22 | | X+384+x=2510 | | 4-5y=45 | | 120=1/3p | | x/9=(x/9)-10 | | 6(x-5)=4x=20 | | x/8=(x-9)-10 | | 3a=18a-3a | | -2(11h-3)=0 | | 5(x+3)=15x-4 | | 4-2(v-6)+2=26 | | (3x+12)+(2x-17)=180 | | 75-n+2n=43 | | 32^3+x=16^5x | | -2d=18-4d=60 |