320/d2=6

Simple and best practice solution for 320/d2=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 320/d2=6 equation:



320/d2=6
We move all terms to the left:
320/d2-(6)=0
Domain of the equation: d2!=0
d^2!=0/
d^2!=√0
d!=0
d∈R
We multiply all the terms by the denominator
-6*d2+320=0
We add all the numbers together, and all the variables
-6d^2+320=0
a = -6; b = 0; c = +320;
Δ = b2-4ac
Δ = 02-4·(-6)·320
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*-6}=\frac{0-16\sqrt{30}}{-12} =-\frac{16\sqrt{30}}{-12} =-\frac{4\sqrt{30}}{-3} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*-6}=\frac{0+16\sqrt{30}}{-12} =\frac{16\sqrt{30}}{-12} =\frac{4\sqrt{30}}{-3} $

See similar equations:

| 2x(2)-8x+18=0 | | 2x-2+3x=48 | | 2x-2+3x=66 | | -7(x+1)-6=1 | | (7y+4)(-5y-2)=0 | | 9h-9=-3h | | 10n+7=8(2n-4)-9 | | (e+)*3=12 | | 3-467x888=3x | | 2^x=50000 | | 5(4-y)=25 | | -2=-4(-7y+1)+5(8+ | | 48=4x+10 | | -16t2+64t+192=0 | | 13=-4k=9 | | 5x+4x+3=90 | | x2-2x+4=0 | | 0=1-2x^2 | | x2-12x+13=0 | | 3x–9=12 | | -4x-5x-6=-120 | | 8(x-1)-2x=-(x+50 | | 11-2x=x | | 3/8f1/2=6(1/16f-3) | | x2-8x+9=0 | | 11-2x=-4x+9 | | 4x^2-50x+260=0 | | Y=-2x+9x-4 | | 9x+1-2x=7x-5+x | | r^-r=0 | | 116.17=4s+15.53 | | r^@-r=0 |

Equations solver categories