32/6x+6=34/9x-9

Simple and best practice solution for 32/6x+6=34/9x-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 32/6x+6=34/9x-9 equation:



32/6x+6=34/9x-9
We move all terms to the left:
32/6x+6-(34/9x-9)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 9x-9)!=0
x∈R
We get rid of parentheses
32/6x-34/9x+9+6=0
We calculate fractions
288x/54x^2+(-204x)/54x^2+9+6=0
We add all the numbers together, and all the variables
288x/54x^2+(-204x)/54x^2+15=0
We multiply all the terms by the denominator
288x+(-204x)+15*54x^2=0
Wy multiply elements
810x^2+288x+(-204x)=0
We get rid of parentheses
810x^2+288x-204x=0
We add all the numbers together, and all the variables
810x^2+84x=0
a = 810; b = 84; c = 0;
Δ = b2-4ac
Δ = 842-4·810·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-84}{2*810}=\frac{-168}{1620} =-14/135 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+84}{2*810}=\frac{0}{1620} =0 $

See similar equations:

| -4s-8s=-5 | | 20+2=5+3.5x | | 6-8y=18 | | 2/1.5-5/3.75=m | | 65/20=11/n | | m=(2,1.5)(5,3.75) | | b-24=4 | | (5-4x)^2=0.56 | | −5g–13g=54 | | -0.65x+0.49x=54 | | 17x-8+17x-8+17x-8+17x-8=180 | | 6x+4-2=10*4x-8 | | 7x-2(3x+6)=1 | | 25=-8+9(x(+3) | | 7-3t=5 | | 20^3x=12 | | -2(x+3)=-2x-12 | | 3x²-12x+8=0 | | m+3.60=10 | | 2.50m+1.10=10 | | 6.4x-1.6=27.2 | | -8x7+6x=9 | | 10x+3-2x=2(4x+3) | | x-44=3x-20 | | -35x+6=12 | | -16=-5x-1 | | 12x+6-5x=3(x-10) | | 18=-3=3x | | 30+v+39=8v-28 | | −19=4x+9 | | x^2-5=-2.75 | | 2x+10=18;{1,2,3,4} |

Equations solver categories