If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32-2y^2=0
a = -2; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-2)·32
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-2}=\frac{-16}{-4} =+4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-2}=\frac{16}{-4} =-4 $
| x+389.85=1099.95 | | -6x^2+35-17x=0 | | 7x=7x2^3 | | -6x*2+35-17x=0 | | u+6-2(-9u-1)=7(u-1) | | -3x+6x-4=0 | | 7x-7=3x-95 | | 4x+11=6x−24 | | 0.05x+20=70 | | 0.25x-5=2 | | 0.25x-4=2 | | x=-3*4+8 | | ((((((((((1-1)2-2)3-3)4-4)5-5)6-6)7-7)8-8)9-9)10-10)=c | | -8.8(x-3.15)=26.4 | | 13/3+1/8t=7 | | 5(21+7y)-4y=12 | | 8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u8u=((((((((((1-1)2-2)3-3)4-4)5-5)6-6)7-7)8-8)9-9)10-10) | | 15x−53=5x+4 | | 8-((3/4)c)=5 | | 8÷x=160 | | 8-(0.75c)=5 | | 5x+19=90 | | 8k-48=54 | | -10+y+y=2 | | S=4w+56 | | -20+y+y=2 | | (8k+k^2-6)-(10k+7-2k^2)=0 | | 7x+9+5x+3=18” | | 12-(-4x)=16 | | 2(60+9y)+6y=-48 | | 4x-15=10x-5 | | 3(x+1)=3x+3 |