If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32+b2=52
We move all terms to the left:
32+b2-(52)=0
We add all the numbers together, and all the variables
b^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| -14.5=b+(-10.2) | | 3/x+5=-126 | | 3(2w+5)=19(w-4) | | x+29.8=67.4 | | 2(t+3)+2(t+3)=56 | | 10m-8=2(4m+1) | | 61=x-(-42.8) | | 5d-7=3d+17 | | -25=n+(-22) | | -5=3(p-6 | | 3c+2c+c=180 | | x–2x=2 | | -14=2n-6 | | 14=x+5x+8 | | 4)-25=n+(-22) | | 3/4n+5=15 | | 4n-2=90 | | -15+x=-61 | | 8+8b=6 | | 6(-4+7x)-3x=7x+40 | | (y+7)=20 | | -6+2x=-2(3-7x) | | 5/8y-6=8 | | -7+n+8-2n=n-3 | | -86=-2x-5(8-5x) | | x=2x³+x²+x | | x-(-49)=32 | | 2-7n+5n=16 | | 11b-14b-16b-3b=10 | | -72=9(r+6) | | 85=6(x+6)+7 | | 3x/10=-6 |