If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31k^2+6k=0
a = 31; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·31·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*31}=\frac{-12}{62} =-6/31 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*31}=\frac{0}{62} =0 $
| 5.6(22-3.4x=) | | z+57=97 | | n+250=953 | | h−242=–232 | | p-75=268 | | p−75=268 | | 4(w+1)=-6;w | | 4j=92 | | 697=s-29 | | 697=s−29 | | j−6=17 | | b+89=598 | | 2/5(j+40)=-4;j | | 7=j-50 | | r-479=288 | | 7p-8=22;p | | r−479=288 | | s-86=11 | | -3t+-8=25;t | | s−86=11 | | 23=g-14 | | 69=u+45 | | 5(n-4)=-60;n | | y+3=99 | | 3q2–43q=0 | | 4x-13=3x=7 | | 33÷x-6=11 | | d-211-2=50 | | 33÷x-6;x=11 | | 80=y+76 | | v-63=27 | | v−63=27 |