If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31=(-1/2)(8x+22)+2
We move all terms to the left:
31-((-1/2)(8x+22)+2)=0
Domain of the equation: 2)(8x+22)+2)!=0We multiply parentheses ..
x∈R
-((-8x^2-1/2*22)+2)+31=0
We multiply all the terms by the denominator
-((-8x^2-1+31*2*22)+2)=0
We calculate terms in parentheses: -((-8x^2-1+31*2*22)+2), so:We get rid of parentheses
(-8x^2-1+31*2*22)+2
We get rid of parentheses
-8x^2-1+2+31*2*22
We add all the numbers together, and all the variables
-8x^2+1365
Back to the equation:
-(-8x^2+1365)
8x^2-1365=0
a = 8; b = 0; c = -1365;
Δ = b2-4ac
Δ = 02-4·8·(-1365)
Δ = 43680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43680}=\sqrt{16*2730}=\sqrt{16}*\sqrt{2730}=4\sqrt{2730}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2730}}{2*8}=\frac{0-4\sqrt{2730}}{16} =-\frac{4\sqrt{2730}}{16} =-\frac{\sqrt{2730}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2730}}{2*8}=\frac{0+4\sqrt{2730}}{16} =\frac{4\sqrt{2730}}{16} =\frac{\sqrt{2730}}{4} $
| 2x+10(1+2)=100 | | 31=-1/2(8x+22)+2 | | 8=-6w+11w-12 | | -12=24=4b | | 7=13-v | | x4−8=12 | | 3y+4=12y-10 | | 2x+8=8-9x | | 15x+22=23 | | 5a-11a+11a+11a+10a=8 | | 6n-6n=10+4n-2n | | 8x+5x-6-4x+1=x+x+4 | | 13u-13u+2u+3u=15 | | 3(x+7)-4(2x=1)=12 | | 5z+3=−3z | | 11d-2d-7d=20 | | 56°+(3x+7)°=90 | | 24+4v=7v | | 13m-13m+m-m+2m=6 | | 2x+6=6x/2 | | 56°+3x+7°=90 | | 92x=6 | | 2h-7+7h=12 | | 6,975,000,000=5(3)^x | | 3(3p+3)=+5(3p-3) | | 15x+8-7x=2-4x+10 | | 9z+3z-4z-5z=12 | | j-j+3j-2j=13 | | -1x+27+1x+3=9x+603 | | 16m-15m+2m+m-m=6 | | -7+v/5=8 | | X^5+2x=3 |