31/2x-4+3x-2=390

Simple and best practice solution for 31/2x-4+3x-2=390 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31/2x-4+3x-2=390 equation:



31/2x-4+3x-2=390
We move all terms to the left:
31/2x-4+3x-2-(390)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+31/2x-396=0
We multiply all the terms by the denominator
3x*2x-396*2x+31=0
Wy multiply elements
6x^2-792x+31=0
a = 6; b = -792; c = +31;
Δ = b2-4ac
Δ = -7922-4·6·31
Δ = 626520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{626520}=\sqrt{4*156630}=\sqrt{4}*\sqrt{156630}=2\sqrt{156630}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-792)-2\sqrt{156630}}{2*6}=\frac{792-2\sqrt{156630}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-792)+2\sqrt{156630}}{2*6}=\frac{792+2\sqrt{156630}}{12} $

See similar equations:

| 5u^2=60 | | 5/3+x/2=25/6 | | 3x^2-23x*30=0 | | (25^((2x+1)/2))^1/(2-x)=1/5 | | 0=5(x+1)-x-3(x-1)-7 | | 7+8a=2a+1 | | 0=-3(y+1)+7y-4(y+1)+5 | | -5.2x=20.8 | | -3+7r=5r-15 | | 77-(3x+16)=3(x+4)+x | | 28d^2-7d=0 | | 3x+x-180=0 | | Y=30+0.15x | | 2u+42=-6(u-3) | | X=1/9y-6 | | 5-((x+8)/4)+((x-5)/3)=0 | | 2(x-2)-4=2(x-9) | | 5=(x+8)/4+(x-5)/3 | | 7/5x+2=16 | | 5=((x+8)/4)+((x-5)/3) | | 7/2x+1/2x=4x+20/2+5/2x | | 9x^2=18x+40 | | x^​2-x-20=0 | | -23v+4=8 | | 8t-26=23+t | | 4x+3+6x+8+2x+13=180 | | x/12=7.5/8 | | w+38/3=2/3 | | 2x^2+9x=x-14 | | 4m+6-2m=2m+ | | 2x+13=3x+20+7x+17 | | 4(1.04)^t=t+8 |

Equations solver categories