30x/5x+6x=10/5x

Simple and best practice solution for 30x/5x+6x=10/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30x/5x+6x=10/5x equation:



30x/5x+6x=10/5x
We move all terms to the left:
30x/5x+6x-(10/5x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
30x/5x+6x-(+10/5x)=0
We add all the numbers together, and all the variables
6x+30x/5x-(+10/5x)=0
We get rid of parentheses
6x+30x/5x-10/5x=0
We multiply all the terms by the denominator
6x*5x+30x-10=0
We add all the numbers together, and all the variables
30x+6x*5x-10=0
Wy multiply elements
30x^2+30x-10=0
a = 30; b = 30; c = -10;
Δ = b2-4ac
Δ = 302-4·30·(-10)
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{21}}{2*30}=\frac{-30-10\sqrt{21}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{21}}{2*30}=\frac{-30+10\sqrt{21}}{60} $

See similar equations:

| t15=3➗ | | (4x+2)=70 | | x-6.8=12.3 | | 33=x/4 | | 32=8(2m+4) | | -4/5-2y=-28 | | b^2+3b=92+5b | | 0.5/m=3.2 | | -36=-45n | | 0.5m/m=3.2 | | –25y=–775 | | 4(n-2)+4n=5+9 | | -8(2k-12)=-18 | | 11+7x=76 | | 18(2w+4)=18 | | 12b+2+5b+8=180 | | 12b+2+5b+8=180 | | 12b+2+5b=8=180 | | 12b+2+5b=8=180 | | 12b+2+5b=8=180 | | 24÷h=-6 | | 8=-4(x-2)-12 | | y=42,500(1.15)^7 | | 3.3+2q=18.72 | | 12b+2+12b+8=180 | | 73°(25x+7)°=180 | | 12b+2+12b=8=180 | | 3x+7x-18+6=180 | | 3/7=n/84 | | 3/7=n/84 | | 3x+7x-18+6=90 | | 7.7x−3.2=43 |

Equations solver categories