30w+20(w+1)/(w+w+1)=24

Simple and best practice solution for 30w+20(w+1)/(w+w+1)=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30w+20(w+1)/(w+w+1)=24 equation:


D( w )

w+w+1 = 0

w+w+1 = 0

w+w+1 = 0

2*w+1 = 0 // - 1

2*w = -1 // : 2

w = -1/2

w in (-oo:-1/2) U (-1/2:+oo)

(20*(w+1))/(w+w+1)+30*w = 24 // - 24

(20*(w+1))/(w+w+1)+30*w-24 = 0

(20*(w+1))/(2*w+1)+30*w-24 = 0

(20*(w+1))/(2*w+1)+(30*w*(2*w+1))/(2*w+1)+(-24*(2*w+1))/(2*w+1) = 0

20*(w+1)+30*w*(2*w+1)-24*(2*w+1) = 0

60*w^2+50*w-48*w-24+20 = 0

60*w^2+2*w-4 = 0

60*w^2+2*w-4 = 0

2*(30*w^2+w-2) = 0

30*w^2+w-2 = 0

DELTA = 1^2-(-2*4*30)

DELTA = 241

DELTA > 0

w = (241^(1/2)-1)/(2*30) or w = (-241^(1/2)-1)/(2*30)

w = (241^(1/2)-1)/60 or w = (-(241^(1/2)+1))/60

2*(w+(241^(1/2)+1)/60)*(w-((241^(1/2)-1)/60)) = 0

(2*(w+(241^(1/2)+1)/60)*(w-((241^(1/2)-1)/60)))/(2*w+1) = 0

(2*(w+(241^(1/2)+1)/60)*(w-((241^(1/2)-1)/60)))/(2*w+1) = 0 // * 2*w+1

2*(w+(241^(1/2)+1)/60)*(w-((241^(1/2)-1)/60)) = 0

( w+(241^(1/2)+1)/60 )

w+(241^(1/2)+1)/60 = 0 // - (241^(1/2)+1)/60

w = -((241^(1/2)+1)/60)

( w-((241^(1/2)-1)/60) )

w-((241^(1/2)-1)/60) = 0 // + (241^(1/2)-1)/60

w = (241^(1/2)-1)/60

w in { -((241^(1/2)+1)/60), (241^(1/2)-1)/60 }

See similar equations:

| 6t^2-42=0 | | 14x+2=4x+22 | | 8x-1.2=-9x+14 | | 12(x+2)=5x+17 | | 25c^2-25c-50=0 | | 2x=1-4x | | -2x-3x+4x-10x= | | 2x-30=0 | | -3x+10=41 | | 16x^2-29x+9=0 | | 100-3x-(7-3)(x-3)=7 | | X^3+x^2-y^2-y^3= | | 2x-(3-x)=18 | | 3x+(7-x)=10 | | X^3-8y^3-6y^2+3xy= | | X=3-2(19/29) | | 7+2x=x^2 | | 1-2=5x | | (y+10)10=125.44 | | 1+a=15 | | y^2-8x+4=0 | | 46.66-23.33= | | 46.66/2= | | lg(3x-2)=1 | | 140/3= | | (4+2x)/5+4=x/2 | | 5x^4-20x^3+40x=0 | | 3m^2+6m-3=0 | | 3y-22=-4-3y | | (5-2x)/3=-4 | | 2x^2+tx+1=0 | | x^2+kx-2k^2=0 |

Equations solver categories