If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30n^2+15n=0
a = 30; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·30·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*30}=\frac{-30}{60} =-1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*30}=\frac{0}{60} =0 $
| 5n+8n=13 | | −40−(2x+5)=−61 | | 3a+3+6=12 | | 4.50/x=45 | | 2h−1=5 | | 240x=80*300 | | 45=a-5 | | 14−2j=8 | | 3x-6-4x=-8 | | x/3^2-15=60 | | 22+2h=58 | | 256=z2 | | 3+3x+x-5=2.6 | | -3p+8p=15 | | m3+7=10 | | n+9=24 | | -7y-6y-14y=-19 | | 3(4a-5)°=90 | | 240x=80x300 | | 5(n-87)=25 | | 4x+16-3x=8+4x-7 | | 20b+13=33 | | (6x-3)=20 | | 3.6(x-2)=2.4x | | 3a-9=-3 | | 3(60-7y)+21y=180 | | x²+8x=209 | | a-5=47 | | 8^2x-3=1/16^x-2 | | 4q+11q-6q-2q-5=23 | | 5x+9x-2x=72 | | 10=(x+3) |