305x+150x(x+50)=34800

Simple and best practice solution for 305x+150x(x+50)=34800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 305x+150x(x+50)=34800 equation:


Simplifying
305x + 150x(x + 50) = 34800

Reorder the terms:
305x + 150x(50 + x) = 34800
305x + (50 * 150x + x * 150x) = 34800
305x + (7500x + 150x2) = 34800

Combine like terms: 305x + 7500x = 7805x
7805x + 150x2 = 34800

Solving
7805x + 150x2 = 34800

Solving for variable 'x'.

Reorder the terms:
-34800 + 7805x + 150x2 = 34800 + -34800

Combine like terms: 34800 + -34800 = 0
-34800 + 7805x + 150x2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(-6960 + 1561x + 30x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-6960 + 1561x + 30x2)' equal to zero and attempt to solve: Simplifying -6960 + 1561x + 30x2 = 0 Solving -6960 + 1561x + 30x2 = 0 Begin completing the square. Divide all terms by 30 the coefficient of the squared term: Divide each side by '30'. -232 + 52.03333333x + x2 = 0.0 Move the constant term to the right: Add '232' to each side of the equation. -232 + 52.03333333x + 232 + x2 = 0.0 + 232 Reorder the terms: -232 + 232 + 52.03333333x + x2 = 0.0 + 232 Combine like terms: -232 + 232 = 0 0 + 52.03333333x + x2 = 0.0 + 232 52.03333333x + x2 = 0.0 + 232 Combine like terms: 0.0 + 232 = 232 52.03333333x + x2 = 232 The x term is 52.03333333x. Take half its coefficient (26.01666667). Square it (676.8669446) and add it to both sides. Add '676.8669446' to each side of the equation. 52.03333333x + 676.8669446 + x2 = 232 + 676.8669446 Reorder the terms: 676.8669446 + 52.03333333x + x2 = 232 + 676.8669446 Combine like terms: 232 + 676.8669446 = 908.8669446 676.8669446 + 52.03333333x + x2 = 908.8669446 Factor a perfect square on the left side: (x + 26.01666667)(x + 26.01666667) = 908.8669446 Calculate the square root of the right side: 30.147420198 Break this problem into two subproblems by setting (x + 26.01666667) equal to 30.147420198 and -30.147420198.

Subproblem 1

x + 26.01666667 = 30.147420198 Simplifying x + 26.01666667 = 30.147420198 Reorder the terms: 26.01666667 + x = 30.147420198 Solving 26.01666667 + x = 30.147420198 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-26.01666667' to each side of the equation. 26.01666667 + -26.01666667 + x = 30.147420198 + -26.01666667 Combine like terms: 26.01666667 + -26.01666667 = 0.00000000 0.00000000 + x = 30.147420198 + -26.01666667 x = 30.147420198 + -26.01666667 Combine like terms: 30.147420198 + -26.01666667 = 4.130753528 x = 4.130753528 Simplifying x = 4.130753528

Subproblem 2

x + 26.01666667 = -30.147420198 Simplifying x + 26.01666667 = -30.147420198 Reorder the terms: 26.01666667 + x = -30.147420198 Solving 26.01666667 + x = -30.147420198 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-26.01666667' to each side of the equation. 26.01666667 + -26.01666667 + x = -30.147420198 + -26.01666667 Combine like terms: 26.01666667 + -26.01666667 = 0.00000000 0.00000000 + x = -30.147420198 + -26.01666667 x = -30.147420198 + -26.01666667 Combine like terms: -30.147420198 + -26.01666667 = -56.164086868 x = -56.164086868 Simplifying x = -56.164086868

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.130753528, -56.164086868}

Solution

x = {4.130753528, -56.164086868}

See similar equations:

| y*y+13y-8y= | | 4x+6=x+26 | | -3x^2-9x=4 | | 0.5(f+10)= | | y(8)=8-5 | | y(5)=5-5 | | 8x+44=8(1+x) | | 2*(n+6)+3= | | 4a-27=-3-2(-2a+8) | | y(2)=2-5 | | 2x(n+6)+3= | | y(1)=1-5 | | y(-1)=-1-5 | | 7b/4b | | 5(2n+4)=20+3n | | 100+27*8= | | 15n+12n+13= | | 9x+7=2.697 | | 6x^2+13x=p | | 4x^2-4-1=0 | | 3/20x=6/x | | x-2=4.13 | | 1.5(2m-3)-0.8=2.7 | | y[n]=n^2x[n] | | 7qm=9(m+4) | | 126/k=14/3 | | 7m=p(m+4) | | 90=6(15+-2y)+12y | | 6840/180 | | 7m=p(cm+4) | | 32/5=97.5/q | | 3x/5=6/10 |

Equations solver categories