300=1/26x2

Simple and best practice solution for 300=1/26x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 300=1/26x2 equation:



300=1/26x^2
We move all terms to the left:
300-(1/26x^2)=0
Domain of the equation: 26x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/26x^2+300=0
We multiply all the terms by the denominator
300*26x^2-1=0
Wy multiply elements
7800x^2-1=0
a = 7800; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·7800·(-1)
Δ = 31200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31200}=\sqrt{400*78}=\sqrt{400}*\sqrt{78}=20\sqrt{78}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{78}}{2*7800}=\frac{0-20\sqrt{78}}{15600} =-\frac{20\sqrt{78}}{15600} =-\frac{\sqrt{78}}{780} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{78}}{2*7800}=\frac{0+20\sqrt{78}}{15600} =\frac{20\sqrt{78}}{15600} =\frac{\sqrt{78}}{780} $

See similar equations:

| -4x+11=-1 | | 1+2x=3x+10 | | P=-3x2+30x-45 | | -19+x=41+3x | | 6(d-79)=36 | | -4-5(x=8) | | 3+7x=-x+67 | | -4x-4=+8 | | X2-10x+17=0 | | 2x-120=13x=56 | | 2y+10y+25y=0 | | k/3-4=4 | | 4x-2+21=180 | | -4x+2=+18 | | r-58=28 | | 15x-11=23+13x | | 8(x-2)+7=8x-8 | | -111-6x=159+4x | | -7(x-17)=-161 | | d+16/8=7 | | 6x-6(8x+6)=6x+12 | | -158+4x=130-12x | | 5y-50=20 | | x+70=8x | | (x-17)-7=-161 | | 16x+72=x+87 | | -8x-42=48-3x | | -3x-3=+22 | | 6s-10=10s-30 | | -114+6x=-7x+198 | | 6s-10=10-30 | | (3x-5)=4x-8 |

Equations solver categories