300+y-450=2/5y

Simple and best practice solution for 300+y-450=2/5y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 300+y-450=2/5y equation:



300+y-450=2/5y
We move all terms to the left:
300+y-450-(2/5y)=0
Domain of the equation: 5y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
y-(+2/5y)+300-450=0
We add all the numbers together, and all the variables
y-(+2/5y)-150=0
We get rid of parentheses
y-2/5y-150=0
We multiply all the terms by the denominator
y*5y-150*5y-2=0
Wy multiply elements
5y^2-750y-2=0
a = 5; b = -750; c = -2;
Δ = b2-4ac
Δ = -7502-4·5·(-2)
Δ = 562540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{562540}=\sqrt{4*140635}=\sqrt{4}*\sqrt{140635}=2\sqrt{140635}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-750)-2\sqrt{140635}}{2*5}=\frac{750-2\sqrt{140635}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-750)+2\sqrt{140635}}{2*5}=\frac{750+2\sqrt{140635}}{10} $

See similar equations:

| -9b–10=8–7b | | -d=-6d+5 | | 3x(3x+2)=4+6x | | 6q-4q-2=10 | | x3+3x2+-10x=0 | | 14400+1250x=30150-1000x | | 3x-5(x-3)=-2+4x-13 | | 15m-5m=-20 | | 39-3n=-6(4n-3 | | 4x+2x-24=3(2x-8) | | 4a-3a-1=16 | | -9j–8=-8–9j | | -6b–4=10–6b | | 5=-16t^2+311 | | 2=4/c | | 8f+10=-10+4f | | r+48=88 | | 1000000=2000x-20001000 | | 4p–7=-p+8 | | j+3j=8 | | g+6g=7 | | 7m+1=8m-6 | | n÷7=56 | | 5/2q+2=6q+3+8q+4 | | 4s+s-3=17 | | 2u–9=3u+1 | | 4x^2=-52x-160 | | n÷=56 | | 5x-3x+5=-6x+70-5x | | 1+7m=5m-6 | | 2-u=-11 | | 4(5x-1)-3(5x-16)=2(2x+4)-5 |

Equations solver categories