If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30-6x^2-15x=0
a = -6; b = -15; c = +30;
Δ = b2-4ac
Δ = -152-4·(-6)·30
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{105}}{2*-6}=\frac{15-3\sqrt{105}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{105}}{2*-6}=\frac{15+3\sqrt{105}}{-12} $
| 2(4+2w)-8=4 | | 18=5a+3 | | 5x-10x2-20=0 | | -4u=-5u+3 | | 3|3x+2|-2=7 | | 4(x-4)=24+4x | | 13x+23x=90 | | 16t+0=0+16t | | 1.5=1.03^4x | | -3-6=-7h+4 | | 5x-12x+7=7x+19 | | 6b=8b+8 | | 2/4z=4(1/4) | | 2/4z=41/4 | | 21+21x=22.109 | | 2/4z=1/4 | | 6+2r=4r | | 7u=u+25 | | X^2+2x-15=|x-2|+4 | | -9=-10u-9 | | 7x=9=4x+4 | | -9s-8=-10s | | 5c-8=6c | | 5+9x-11x-5=180 | | 12x+21=21 | | 20-2.5x=12.50 | | -6(2w-6)+7w=5(w+8) | | x-7=-8x–16 | | 9+8q=1+7q | | 12y-9+y-6=180 | | -9h-45+8=17 | | 37=w/5+11 |