3/x-1/(x-2)=4

Simple and best practice solution for 3/x-1/(x-2)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/x-1/(x-2)=4 equation:



3/x-1/(x-2)=4
We move all terms to the left:
3/x-1/(x-2)-(4)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x-2)!=0
We move all terms containing x to the left, all other terms to the right
x!=2
x∈R
We calculate fractions
(3x-6)/(x^2-2x)+(-x)/(x^2-2x)-4=0
We add all the numbers together, and all the variables
(3x-6)/(x^2-2x)+(-1x)/(x^2-2x)-4=0
We multiply all the terms by the denominator
(3x-6)+(-1x)-4*(x^2-2x)=0
We multiply parentheses
-4x^2+(3x-6)+(-1x)+8x=0
We get rid of parentheses
-4x^2+3x-1x+8x-6=0
We add all the numbers together, and all the variables
-4x^2+10x-6=0
a = -4; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·(-4)·(-6)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*-4}=\frac{-12}{-8} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*-4}=\frac{-8}{-8} =1 $

See similar equations:

| 6k+3-2k=k-3 | | 5x+3-2x=7x+8 | | -5+2x=x | | 10+3m=m+4m | | Y-100=5y | | -14x=-100 | | 3(2x+7)=18* | | 6x+32=118 | | 11+4n=6n+1 | | 3=n/19 | | -9-n=3 | | -41x=-60 | | 55=56x | | 3x+5=x+55 | | -3n+8=-8(6n-1) | | 6(1+7v)=6+v | | -11=u/3-1 | | 8x+7(−5x−4)= | | 8x+7(−5x−4)=9 | | 238=a-77 | | −7x−8(6x+8)=−1 | | -3/2z+5=-13 | | 24=m² | | 156=3-w | | x-2.18=5.9 | | -12x-9+9+7x=26 | | 11-n+3=2n+3n | | x-8.5=2.27 | | x+3=$.5 | | 10/3=x/3 | | 4.x+9=33 | | 6–5y=-9 |

Equations solver categories