If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/x+2/(x+1)=5
We move all terms to the left:
3/x+2/(x+1)-(5)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x+1)!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
x!=-1
x∈R
(3x+3)/(x^2+x)+2x/(x^2+x)-5=0
We multiply all the terms by the denominator
(3x+3)+2x-5*(x^2+x)=0
We add all the numbers together, and all the variables
2x+(3x+3)-5*(x^2+x)=0
We multiply parentheses
-5x^2+2x+(3x+3)-5x=0
We get rid of parentheses
-5x^2+2x+3x-5x+3=0
We add all the numbers together, and all the variables
-5x^2+3=0
a = -5; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-5)·3
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-5}=\frac{0-2\sqrt{15}}{-10} =-\frac{2\sqrt{15}}{-10} =-\frac{\sqrt{15}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-5}=\frac{0+2\sqrt{15}}{-10} =\frac{2\sqrt{15}}{-10} =\frac{\sqrt{15}}{-5} $
| 3/x+2/x+1=5 | | 24x+28=132 | | x2+7=71 | | 4=5x+720-x | | 17-s=4+12 | | 4=5(x/360)+2(360-x/360) | | 2+x/6=6 | | -5.2=7.3+x/5 | | 21=14+7c | | 2x+3+x=80 | | 221=91-x | | 10=k/6 | | 3x+20=`15x-64 | | (x+1)²/(x-4)²=1 | | 1,300+150x=2500 | | 5/6k-20=-21 | | 4x+10+x-11=180 | | 4(x+6)–3x=36 | | 91=-7c | | 20+2x+30=150 | | -5y+3(y-6)=-22 | | 26m=6 | | 120=27.74+0.25x | | 5(w-3)=3w-7 | | 1x-6=4x-2 | | -12=-8x+3(x+6) | | w+w+w+w=25 | | 1500=750+25x | | 21-7x=25 | | 410=220+0.25x | | 1/3p=21 | | 4-(p-5)=19 |