3/v+7-2-7v/v+5v=4/v-2

Simple and best practice solution for 3/v+7-2-7v/v+5v=4/v-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/v+7-2-7v/v+5v=4/v-2 equation:



3/v+7-2-7v/v+5v=4/v-2
We move all terms to the left:
3/v+7-2-7v/v+5v-(4/v-2)=0
Domain of the equation: v!=0
v∈R
Domain of the equation: v-2)!=0
v∈R
We add all the numbers together, and all the variables
5v+3/v-7v/v-(4/v-2)+5=0
We get rid of parentheses
5v+3/v-7v/v-4/v+2+5=0
We multiply all the terms by the denominator
5v*v-7v+2*v+5*v+3-4=0
We add all the numbers together, and all the variables
5v*v-1=0
Wy multiply elements
5v^2-1=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $

See similar equations:

| t+79+37=3t+55 | | -7k=3-10k | | 17c-25=12c | | 7x+18+14x-29=180 | | 6a-45=a+50 | | 9k-6k=9 | | 19a-23=15a+13 | | 4-3m=13 | | 10v-1=13v-45 | | 20x-3=-12-7x | | 9v–36+v+35=13v–45 | | 8x-9x-7=19 | | 1/5k-3=3/10k | | 5x3=90 | | -4=-x/7 | | 5c+30=8c-37 | | -17-d/2=-32 | | 8w+27+47=47w | | 4.4y-3-1.1y=3.6 | | 4.5x=3.5(200-x)=817 | | 3x-4x+12+2x=12 | | x+2=3(x-22) | | 2/3*a=12 | | 8(x+2)-7=41 | | 55p+94=81p+73 | | 5x^-4x=0 | | 29=5(d-3)-1 | | 7v-87+44=5v | | P=160-5x | | 14z-21+87=12z+77 | | 8p-7=1+8P | | 3x-9=-7+1x |

Equations solver categories