3/b+b+(b+45)+(2b-90)+90=540

Simple and best practice solution for 3/b+b+(b+45)+(2b-90)+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/b+b+(b+45)+(2b-90)+90=540 equation:



3/b+b+(b+45)+(2b-90)+90=540
We move all terms to the left:
3/b+b+(b+45)+(2b-90)+90-(540)=0
Domain of the equation: b!=0
b∈R
We add all the numbers together, and all the variables
b+3/b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*b+b*b+2b*b+45*b-90*b-450*b+3=0
We add all the numbers together, and all the variables
-495b+b*b+b*b+2b*b+3=0
Wy multiply elements
b^2+b^2+2b^2-495b+3=0
We add all the numbers together, and all the variables
4b^2-495b+3=0
a = 4; b = -495; c = +3;
Δ = b2-4ac
Δ = -4952-4·4·3
Δ = 244977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-495)-\sqrt{244977}}{2*4}=\frac{495-\sqrt{244977}}{8} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-495)+\sqrt{244977}}{2*4}=\frac{495+\sqrt{244977}}{8} $

See similar equations:

| 12-(-11+15x)=0 | | -n-2n=2(7n+4)+5(-3n-2) | | 4x+16=6x-1 | | -4/5(x-10)=-8 | | (6+2x)+4=3x+2 | | 8x-5=3x+-8 | | 0-0=o | | 9-3x-5-28x=7 | | 27=3c−3(6−2c)=27 | | -6(7-n)=-3(n-4) | | -7(-2x+2)=126 | | 3c+15=55-c | | -8v+6(v+2)=-4 | | 6h+0=8h-180 | | 2x+5=4x+1 | | 9r-2r-4r-3=9 | | 334=2m+84*3+20 | | 5x+4=8x-74 | | 3x+2x=6-5 | | 3(z−3)= 9 | | 16+p=23 | | 1/10(x+131)=-2(2-x) | | 4(x+1)^2=17 | | -3(3x-3)+10x=39 | | (2x+5)+(3x+7)=6x+3 | | 5z=8z−9 | | 3(x-4)=2x+-8 | | 16y-36=4(4y-9) | | 8+2(3a-5)=28 | | 4y+-1=-21 | | -(x+2=-8 | | 0.6+1.6=0.9x-1.1 |

Equations solver categories