3/9x+(5/9x+86)=x

Simple and best practice solution for 3/9x+(5/9x+86)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/9x+(5/9x+86)=x equation:



3/9x+(5/9x+86)=x
We move all terms to the left:
3/9x+(5/9x+86)-(x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 9x+86)!=0
x∈R
We add all the numbers together, and all the variables
-1x+3/9x+(5/9x+86)=0
We get rid of parentheses
-1x+3/9x+5/9x+86=0
We multiply all the terms by the denominator
-1x*9x+86*9x+3+5=0
We add all the numbers together, and all the variables
-1x*9x+86*9x+8=0
Wy multiply elements
-9x^2+774x+8=0
a = -9; b = 774; c = +8;
Δ = b2-4ac
Δ = 7742-4·(-9)·8
Δ = 599364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{599364}=\sqrt{36*16649}=\sqrt{36}*\sqrt{16649}=6\sqrt{16649}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(774)-6\sqrt{16649}}{2*-9}=\frac{-774-6\sqrt{16649}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(774)+6\sqrt{16649}}{2*-9}=\frac{-774+6\sqrt{16649}}{-18} $

See similar equations:

| 3/9x+5/9x=x | | 5.25x+3.25x=-36 | | ?=5d-7-d+4 | | 5y-7=25+y | | 5(x+3)=10×-20 | | x+(x-4)=(x+2)+(x-3) | | f−23=2 | | q-24=6 | | n=2+6/7 | | 3-7n=-17 | | 6/y=9/21 | | (X+1)(x+3)(x+5)(x+7)-9=0 | | 6y/11=54/99 | | p-11=21 | | 2x+57=x-24 | | 7=7(f-86) | | x-30/10=7/3 | | 3^3x+1=22 | | 9=b+33/8 | | x/3=3/3 | | 9x^2+41x+46=0 | | 3x+2+2x=+3x-10 | | 29a=86 | | x/10=73 | | -5+9=33+7x | | 3^(7-5x)=7 | | -119=-5-3(8+6x) | | 56=21x2x | | 5-4(3x-6)=10 | | -3x+2.5=17 | | X2-18x+17=0 | | (x+1)(x-4)=84 |

Equations solver categories