3/8n+5(n-6)=1.875n-2

Simple and best practice solution for 3/8n+5(n-6)=1.875n-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/8n+5(n-6)=1.875n-2 equation:



3/8n+5(n-6)=1.875n-2
We move all terms to the left:
3/8n+5(n-6)-(1.875n-2)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
We multiply parentheses
3/8n+5n-(1.875n-2)-30=0
We get rid of parentheses
3/8n+5n-1.875n+2-30=0
We multiply all the terms by the denominator
5n*8n-(1.875n)*8n+2*8n-30*8n+3=0
We add all the numbers together, and all the variables
5n*8n-(+1.875n)*8n+2*8n-30*8n+3=0
We multiply parentheses
-8n^2+5n*8n+2*8n-30*8n+3=0
Wy multiply elements
-8n^2+40n^2+16n-240n+3=0
We add all the numbers together, and all the variables
32n^2-224n+3=0
a = 32; b = -224; c = +3;
Δ = b2-4ac
Δ = -2242-4·32·3
Δ = 49792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49792}=\sqrt{64*778}=\sqrt{64}*\sqrt{778}=8\sqrt{778}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-224)-8\sqrt{778}}{2*32}=\frac{224-8\sqrt{778}}{64} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-224)+8\sqrt{778}}{2*32}=\frac{224+8\sqrt{778}}{64} $

See similar equations:

| 2.5x55=70 | | 2^x=4444 | | P=14+7d/12 | | -8(x+6)-7=-3(x-2) | | Y-26=x | | 9(8x)=72 | | X8x9=72 | | 1=5(m+1)=26 | | 3x-1+12x=14 | | 3x-44=-50 | | x+3+2=2x-1 | | 2x-9=2/3(3x-6)-7 | | 1/4(4y-8)=2/3y+10 | | X/4-3x/4=1/12 | | 4^(x-1)+8=3.2^(x) | | 5p-5p=0 | | 4^(x-1)+8=3.2^x | | -3+3c=-3 | | 4z+5=2z-10 | | -9+n/14=-1 | | 4x+11.6=143.6 | | 2(8x+7)/3=5 | | -1x-7=5x-11-7 | | 5x+8+7x-3=77 | | 4x-8=6x+30 | | 2x+9=10-3 | | 92=-4(7r-5) | | X^-8-17x^-4+16=0 | | 5a-35=95 | | -10x+-2x=-84 | | b+7b=160 | | 6n-7=22 |

Equations solver categories