3/8k-9=1/5k+3

Simple and best practice solution for 3/8k-9=1/5k+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/8k-9=1/5k+3 equation:



3/8k-9=1/5k+3
We move all terms to the left:
3/8k-9-(1/5k+3)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 5k+3)!=0
k∈R
We get rid of parentheses
3/8k-1/5k-3-9=0
We calculate fractions
15k/40k^2+(-8k)/40k^2-3-9=0
We add all the numbers together, and all the variables
15k/40k^2+(-8k)/40k^2-12=0
We multiply all the terms by the denominator
15k+(-8k)-12*40k^2=0
Wy multiply elements
-480k^2+15k+(-8k)=0
We get rid of parentheses
-480k^2+15k-8k=0
We add all the numbers together, and all the variables
-480k^2+7k=0
a = -480; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-480)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-480}=\frac{-14}{-960} =7/480 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-480}=\frac{0}{-960} =0 $

See similar equations:

| 9(h-2)=5(2h+3) | | x+64+97+3x-57=360 | | 4(8)=y | | 13x+7x+82+61+15x-28=360 | | 2x-1/3=3/10 | | 3x-26+x+91+75=360 | | 3/4x+11=51/2+1/4x | | 2x+4x-7+65+80=360 | | x/2x+9=-5 | | 2x+2x-24+84=360 | | 7x+19=9(x-7) | | m+10=6(m+2) | | m+10=6(m+2 | | 10-3(x+4)=13 | | x+87+3x+99+13x+84+56=360 | | d-297/26=18 | | 2/5=2/x/x+3 | | d-294/26=18 | | x+48+99+3x-51=360 | | 2/3(x+1)=x-1 | | 3/8=x/7/12 | | 13x+37+8x+84+6x+50=360 | | y-3/2=7/2 | | 3x-87+2x-30+50+57=360 | | t5+7=10 | | (4D²+4D+1)Y=o | | (4x-16)=90 | | 15x+5x+84+6x+16=360 | | 4x-99+51+x+73+x+29=360 | | 5(4m+1)=2m+3 | | 8+x =24 | | d/6+13=27 |

Equations solver categories