If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/8(16x-64)=1/2(2x+4)
We move all terms to the left:
3/8(16x-64)-(1/2(2x+4))=0
Domain of the equation: 8(16x-64)!=0
x∈R
Domain of the equation: 2(2x+4))!=0We calculate fractions
x∈R
(6x2/(8(16x-64)*2(2x+4)))+(-8x1/(8(16x-64)*2(2x+4)))=0
We calculate terms in parentheses: +(6x2/(8(16x-64)*2(2x+4))), so:
6x2/(8(16x-64)*2(2x+4))
We multiply all the terms by the denominator
6x2
We add all the numbers together, and all the variables
6x^2
Back to the equation:
+(6x^2)
We calculate terms in parentheses: +(-8x1/(8(16x-64)*2(2x+4))), so:We get rid of parentheses
-8x1/(8(16x-64)*2(2x+4))
We multiply all the terms by the denominator
-8x1
We add all the numbers together, and all the variables
-8x
Back to the equation:
+(-8x)
6x^2-8x=0
a = 6; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·6·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*6}=\frac{0}{12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*6}=\frac{16}{12} =1+1/3 $
| 3x+19+5x=119 | | 1/2+x+x+2x=28 | | 51+42+c=180 | | 0-9=4x | | 6x-20+(-x2)=-55 | | P-4x5=-15 | | 8/w-12=−5 | | 7x/2-5x/3+5=20x/3+10 | | 7a-12=2a+13 | | `-6x-7=4x-2` | | 9+6m-4=m+15 | | x+2+x+3+x+3=x+2+x | | 6x-20-x2=55 | | 20=w/3+ 18 | | -1/5=3y-2 | | 0.5x+3=0.2x | | 20=w3+ 18 | | 7x+2(7x+11)=107 | | 100=12x-1 | | 6x=8x=4/3 | | 12x-3(x+2x)=13 | | 2n^2=298 | | 298x2=6758 | | 7(x-2)=-7+7x | | 3b-21=-48 | | 2{x-3}+3=6x-5 | | 12y+3=1 | | y+3/12=1 | | Y=10x-8=8x-2 | | -6=1(c-4) | | -3(-2+4x)=90 | | 45+5/6x=15 |