3/7x-5=8-3/14x

Simple and best practice solution for 3/7x-5=8-3/14x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/7x-5=8-3/14x equation:



3/7x-5=8-3/14x
We move all terms to the left:
3/7x-5-(8-3/14x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 14x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/7x-(-3/14x+8)-5=0
We get rid of parentheses
3/7x+3/14x-8-5=0
We calculate fractions
42x/98x^2+21x/98x^2-8-5=0
We add all the numbers together, and all the variables
42x/98x^2+21x/98x^2-13=0
We multiply all the terms by the denominator
42x+21x-13*98x^2=0
We add all the numbers together, and all the variables
63x-13*98x^2=0
Wy multiply elements
-1274x^2+63x=0
a = -1274; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-1274)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3969}=63$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-1274}=\frac{-126}{-2548} =9/182 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-1274}=\frac{0}{-2548} =0 $

See similar equations:

| -8–2d=-10d | | 5x+7=3×-9 | | 64*4-a=44 | | 2=x-7x | | -4n=7+3n | | 6+3n=3n+6 | | 4(2x+6)=-45+13 | | 8(-a+2)=32 | | 64-4k=0 | | x-2x^2=-50 | | 7x-1+5x=6x-7 | | 4(2x+6)=45+13 | | 3-4n=n-47 | | -15.8=-3.3+v/5 | | 94-5x=109-8x | | (5n+7)=141 | | F(6)=2x+1 | | 4x-4x+7=6 | | 10y-7y-13=49.49 | | 4x+4x+7=6 | | 16+2-7x+4=6x+2-8x | | 1.50x+6(2.00)=1.80(x+2.00) | | 18/25=x100 | | 18/100=x100 | | 3x+(-4x-11)=12 | | 5n=98-n | | 8x-2=-12x+8 | | 8x-2=-12x=8 | | H(t)=-16t^2+32t+60 | | -7=2v+5 | | -0.7x+5.97=-0.3x+7.17 | | 4w/7=-12 |

Equations solver categories