3/7x-1-9/5x=-83/35

Simple and best practice solution for 3/7x-1-9/5x=-83/35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/7x-1-9/5x=-83/35 equation:



3/7x-1-9/5x=-83/35
We move all terms to the left:
3/7x-1-9/5x-(-83/35)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
3/7x-9/5x-1+83/35=0
We calculate fractions
14525x^2/3675x^2+1575x/3675x^2+(-6615x)/3675x^2-1=0
We multiply all the terms by the denominator
14525x^2+1575x+(-6615x)-1*3675x^2=0
Wy multiply elements
14525x^2-3675x^2+1575x+(-6615x)=0
We get rid of parentheses
14525x^2-3675x^2+1575x-6615x=0
We add all the numbers together, and all the variables
10850x^2-5040x=0
a = 10850; b = -5040; c = 0;
Δ = b2-4ac
Δ = -50402-4·10850·0
Δ = 25401600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25401600}=5040$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5040)-5040}{2*10850}=\frac{0}{21700} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5040)+5040}{2*10850}=\frac{10080}{21700} =72/155 $

See similar equations:

| 8-4x-10=-2x-32 | | x-0.14=3,2 | | 7y-24=8y-14 | | 2x-16=3x-74 | | x-2=7.45 | | 2(x-8)=-50+5x+1 | | -7/6=7/5x-7/6x | | 8x-40-4x=2x+160 | | -7x-1=5(x+3) | | 2.8x-40-4x=2x+160 | | 32+b=137 | | x-18.2=5.25 | | 5.75x+103=419.25 | | (x2+5x−80)=(4x+10) | | 2x-21=x+6 | | 1.2x-21=x+6 | | 5.15+x=8 | | 3(x-2)+4x=7x-6 | | 3/4=3/5m | | –2y+15=3y+5. | | 7p+7p=-14 | | -4(-7x+6)=-248 | | x=-((3/5)) | | r^2-6=-10 | | 35=5w-13 | | 7x8+4x=-3 | | n+19=55 | | -6r+13=17 | | 5/6x=17/8 | | -23=v+7+5v | | 3/4-1/2=x-1/3 | | 95=5(2m |

Equations solver categories